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DC 20375-5000, USA 
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Abstract. A mixed-basis approach for calculating first-principles electronic structure and 
total energies in metals is presented. The technique uses the local-density approximation for 
exchange and correlation in the pseudopotential framework and a minimal basis of localised 
pseudo-atomic orbitals which may be supplemented with a few low-energy plane waves. 
Aside from being accurate, the method is faster and the results are more easily interpretable 
than conventional plane-wave methods. The method is used to calculate bulk properties of 
AI and Nb and the vacancy and high-symmetry octahedral-site self-interstitial formation 
energies in Al. 

1. Introduction 

Ab initio orbital-based methods have received much interest for electronic structure 
calculations in condensed systems since they provide a simple interpretation of bonding 
in solids and they make feasible calculations involving large systems if the basis is kept 
relatively small [ 1-91. Unfortunately, the determination of optimum minimal orbital 
basis sets can be a tedious and time-consuming task often requiring the sampling of 
several sets of functions before a suitable basis set is determined. Furthermore, the set- 
up of the Hamiltonian and overlap matrices requires the evaluation of numerous multi- 
centre integrals which can severely limit the form of the analytic functions which may be 
easily employed as basis functions-normally to only Gaussian type. 

One way of circumventing the need for testing various sets of basis functions is to 
utilise the results of atomic calculations. If one can view the solid state wavefunction as 
only a small perturbation from a periodic array of overlapping atomic wavefunctions, 
then a basis set consisting of the atomic orbitals should represent a highly optimum 
spanning set for the solid state wavefunction. In many solids, however, particularly 
metals, the wavefunction contains highly disturbed free-electron-like components which 
are not ezsily represented by a few localised atomic orbitals. If a purely localised orbital 
basis is to be used for such materials, one often finds that several orbitals from excited 
atomic states with higher principal or angular momentum quantum numbers are needed 
to give an accurate characterisation of the charge density. Thus, the advantage in 
computational speed of a minimal-orbital-based method over the more rigorously com- 
plete basis-set methods, such as the linearised augmented plane-wave [ 101 method or 
the conventional plane-wave-based pseudopotential [ 111 method, is easily lost in such 
systems. 
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In this paper a method which incorporates a minimal basis of pseudo-atomic orbitals 
(PAOS) in the self-consistent pseudopotential scheme [ l l ]  is used to compute the elec- 
tronic structure, total energies and defect formation energies of metals. The method is 
fast in the spirit of a linear muffin-tin orbital [12] or augmented spherical-wave [13] 
approach but avoids the approximations inherent in the use of a muffin-tin potential. To 
account for free-electron-like components in the wavefunction properly, while avoiding 
the use of a large number of orbitals, we also chose to supplement the PAO basis with a 
few low-energy plane waves. Thus our basis is composed of both localised (PAOS) 
and delocalised (plane waves) functions. For insulating and semiconducting systems, 
satisfactory results were found [ 1,2] for a variety of problems; these could be obtained 
even with just sp3 PAOS and no plane waves. For metallic systems, we find the mixture 
of a few low-energy plane waves with the PAOS forms a nearly ideal basis and has 
significant advantages over the more conventional plane-wave-based pseudopotential 
method. The method is computationally efficient and allows for systematic improve- 
ments in the accuracy of the calculation, if desired. The resulting wavefunctions, which 
are sums of atomic orbital components, are also more easily interpreted than con- 
ventional plane-wave-based calculations where the wavefunctions are simply large Fou- 
rier sums. The outline of the paper is as follows. In § 2, we briefly describe the method. 
Section 3 will give some results for bulk properties of A1 and Nb. In 0 4,  we calculate the 
formation energies for the vacancy and the self-interstitial in Al. We consider only the 
highest-symmetry interstitial site which is located at the centre of the face-centred cubic 
(FCC) cube. This interstitial site has six-fold coordination (octahedral symmetry) and is 
expected to be the lowest-energy interstitial site. Section 5 concludes. 

2. Method 

The method that we use is similar to a tight-binding-like approach but is based completely 
on first principles, requiring no adjustable parameters. We use the local-density approxi- 
mation (LDA) within the self-consistent pseudopotential scheme. The pseudopotentials 
are of the type in [14] and were fitted to the form in [15]. We use the parametrisation in 
[16] of the exchange-correlation potential in [17]. The method is similar to earlier work 
in [3] but relies on PAOS constructed directly from the pseudopotentials. It has been 
described in detail and tested extensively for semiconductors in a previous publication 
[l] .  Here we give only a brief outline of the method and investigate its applicability to 
metals. 

Taking literally the tight-binding concept of the solid, we assume that a linear 
combination of Bloch functions of pseudo-atomic orbitals will form a close approxi- 
mation to the true crystal wavefunction. As a starting point, we thus construct Bloch 
basis states for wavevector k and orbital p ( p  includes both the basis atom at T and the 
s, or d orbital) by writing 

where 1 are the Bravis lattice sites. The expression for the Bloch states is identical with 
that used in the empirical tight-binding method, but here the orbitals @LAo(r) are 
explicitly constructed from the atomic pseudopotentials for the isolated atoms using the 
same LDA as the solid. The electronic configurations used to produce the PAOS were 
the same as those used in the construction of the corresponding pseudopotentials. 
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Specifically, the ground-state orbitals were constructed from the ground-state atoms, 
while the excited-states orbitals (d for AI and p for Nb) were constructed from the 
excited configurations s1po 75d0 25 for AI and d3so 75po.25 for Nb. The determination of the 
basis functions thus requires no 'guesswork' and can be constructed in parallel with (or 
otherwise obtained from) the pseudopotentials and fitted to analytic functions. Here we 
have chosen to use Slater orbitals as fitting functions, rather than Gaussians, since they 
better represent the wavefunction tails and effectively decay more rapidly in momentum 
spacet. 

To facilitate simple evaluation of matrix elements, charge densities and total ener- 
gies, we expand the PAOS into their Fourier components and work in the formalism of 
plane waves. Thus the PAOS are written as a sum over reciprocal lattice vectors g:  

The coefficient C,(k - g) is determined to be 

C,(k - g) = (l/vE) exp(ig..r) @LA' ( k  - g) 

where U, is the unit-cell volume and @LAo(k - g) is the Fourier transform of the pseudo- 
atomic orbital. The approximate symbol in equation (2) becomes an equality as the 
energy cut-off E2 ( E ,  = h21k - g, I2/2m) is taken to infinity. The cut-off E ,  in this method 
is similar to the cut-off used in the more conventional plane-wave-based calculations. 

The Fourier decomposition of the wavefunction given by equation (2) is a com- 
putational convenience which, in addition to eliminating the need for evaluating explicit 
malti-centre integrals, allows one the flexibility of employing any functions which have 
convenient analytic Fourier transforms (such as Slater-type functions) as fitting functions 
for the PAOS. An additional advantage of this decomposition is that it allows for a 
straightforward means of improving the accuracy of the method if desired, by excluding 
a few low-energy plane waves in equation (2) and supplementing the local orbital 
basis by these excluded low-energy plane wavest. Thus, the crystal wavefunction is 
decomposed into a mixed basis of free electron-like low-energy plane waves and localised 
PAOS: 

whereXg(k, r )  = (1/Q) exp[i(k + g) . r] and @; ( k ,  r )  is given by equation (2), but exclud- 
ing the terms g < gl$.  The variational coefficients ak(g) and bk(p) are self-consistently 
determined by solving m k  = &(k)SWk, where Hand  S are the Hamiltonian and overlap 
operators. 

The total energy is obtained using the formalism in [ll] and can be expressed as 

where q k  is the occupation number for the state k with eigenvalue &k, F(g) includes the 
Fourier transform of the Hartree and exchange-correlation energy and C is a constant 
which includes ion-ion interactions and is independent of electronic structure. 
t In the tail region the Gaussian transform will eventually decay more rapidly than the Slater transform, but 
at this crossover point the Slater orbital transform is only lo-' its value a t g  = 0 .  
$ Thus by construction, the PAOS are orthogonal to the low-energy plane waves. Numerical problems associ- 
ated with an over-complete basis are in this way also avoided. 
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By keepingg, small in equation (3) the Hamiltonian matrix can be made far smaller 
than plane waves alone would allow. Since the diagonalisation time increases as the cube 
of the matrix dimension, this reduction in matrix size can lead to drastic reductions in 
diagonalisation time. Of course, the expansion of the PAOS in plane waves does lead to 
some increase in the time required for the set-up of the Hamiltonian, but this set-up time 
goes up only as N (not N3), where Nis the number of plane waves used in the expansion, 
and is therefore not a serious handicap. In supercell calculations, in fact, a number of 
simplifications become possible in the PAO approach which often leads to a reduction in 
the PAO set-up time over the plane-wave set-up time. For example, the time-consuming 
non-local potential only needs to be evaluated for each atom type and then multiplied 
by a phase factor. Generally the PAO approach is overall from three to 20 or more times 
faster than pure plane-wave pseudopotential calculations and is far more physically 
appealing. We have found no case where it is slower than plane waves for similar 
accuracy. 

3. Bulk properties 

To demonstrate the accuracy and versatility of the PAO method, we have computed a 
number of bulk properties for the simple FCC metal A1 and the body-centred cubic (BCC) 
transition metal Nb. The calculations were done using a mesh of 20 special k-points in 
the irreducible (one-forty-eighth) Brillouin zone for both A1 and Nb. The expansion in 
equation (2) was taken out to a kinetic energy cut-off E2 of about 150 eV for A1 and 
about 300 eV for Nb. 

3.1. Band structures 

3.1.1. Al. Shown in figure 1 are several calculations of the band structure for Al. We 
computed the bands using various numbers of PAOS and compare them with the more 
rigorous plane-wave result to give an indication of the importance of individual orbital 
components in the wavefunction. The potentials for each of these calculations are 
independently and self-consistently determined. We used a lattice constant of 4.03 A. 
In figure l ( a )  the band structure is computed using only sp3 orbitals with no sup- 
plementing low-energy plane waves. Remarkably, we find that, even with this small a 
basis, the lowest band is quite well reproduced. It is clear, however, that the sp3 PAOS 
do not produce a good overall band structure for Al. As expected, the error in the sp3 
energies become increasingly worse as we move from the more localised lower-energy 
bands to the more extended higher-energy (excited) bands. Nevertheless, in view of the 
fact that they were calculated with only a 4 X 4 Hamiltonian matrix (compared with an 
approximate 70 x 70 plane-wave matrix), the sp3 bands seem surprisingly accurate, 
indicating that the PAOS are close to optimum for this material. 

When a few low-energy plane waves are added to the sp3 basis (denoted sp3 + PW) 
(five to eight plane waves are added depending on the k point [20]), the bands are 
significantly improved (figure l (b)) ,  The addition of the few free-electron-like plane 
waves to the sp3 PAOS appears to have removed most of the discrepancy between the sp3 
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Figure 1. Comparison between pseudo-atomic band structures (. * * a )  and the more rigorous 
plane-wave-derived band structures (-) for Al. The PAO approximations to the plane 
wave results shown are (a )  sp3, ( b )  sp3 + PW (a plane-wave cut-off energy E ,  of 30 eV was 
used, which gives five to eight low-energy plane waves depending on the k-point), (c) sp3d5 
and (d )  sp3d5 + PW. We find all PAO approximations adequately represent the lowest band 
in AI, but excited d orbitals are needed to reproduce the half-filled band or higher-energy 
bands for this simple metal. No shifts of any kind were made in the bands. 

bands and the pure plane-wave bands near the Fermi level. There are still, however, 
significant errors in the higher-energy bands for the sp3 + PW calculationt. 

If d orbitals are used (figure l ( c )  and l(d)), we see dramatic improvements in all 
bands. The use of d orbitals, however, more than doubles the Hamiltonian and overlap 
set-up time, making the calculations much longer. Even so, for even the most soph- 
isticated orbital calculation which uses sp3d5 + Pw(figure l(d)), the method is still far 
faster, even for the perfect crystal, than a conventional plane-wave-only calculation, 
and the accuracy is virtually the same when highly excited states are unimportant. For 
defect systems where large unit cells are used, this speed-up becomes increasingly 
important, typically reducing overall computational effort by an order of magnitude or 
more. 

t The number of plane waves in the basis is determined by the cut-off energy E ,  = fi21k - g, I2/2m and thus is 
dependent on the k-point. Plane waves not explicitly added to the low-energy plane-wave basis are contained 
as Fourier components in the expansion of the PAOS. Thus, discontinuities in the bands, which one might 
expect to arise owing to abrupt changes in the number of plane waves used for different k-points, do not 
appear. 



8364 R W Jansen and B M Klein 

x 
P 
c 

10  

0 
r H N P  r~ r H N P  r N  

Figure2. Comparison between pseudo-atomic band structures ( e  * e )  and the more rigorous 
plane-wave-derived band structures (-) for Nb. The PAO approximations to the plane- 
wave results shown are (a) sp3ds and ( b )  sp3d5 + PW (a plane-wave cut-off energy E ,  of 50 eV 
was used, which gives 12 to 16 low-energy plane waves depending on the k-point). The 
delocalised s-like band (bottom band) is not as well represented by the localised functions 
especially around high-symmetry k-points in (a). Errors in this band and higher-energy bands 
are virtually eliminated by the introduction of just a few low-energy plane waves as in (b) .  
No shifts of any kind were made in the bands. 

3.1.2. Nb. In figure 2 we compare the band structures of Nb computed using sp3d5 
PAOS (figure 2(a ) )  and sp3d5 PAOS supplemented with a few low-energy plane waves 
(sp3d5 + PW; see figure 2 ( b ) ) ,  with that computed using a pure plane-wave basis. The 
lattice constant used here was 3.3 A. Except for the lowest s-like band, we find that the 
overall agreement for the sp3d5 PAO calculation is already quite good. In the solid the 
atomics states become highly extended and are therefore not well represented by a basis 
constructed from the atomic s orbitals. The pure orbital-based calculation (figure 2(a ) )  
of the lowest band, which is derived mostly from the atomics states, is therefore not well 
represented especially near high-symmetry k-points. As expected, the bands that lie 
near the Fermi level, which are derived from the more localized d states, are much better 
represented by the atomic basis than are the s levels. As with AI, the errors in the Nb 
bands, due to the use of orbitals, can again be nearly eliminated by the introduction of 
just a few (12-16) low-energy plane waves (figure 2(b)) .  Previous Gaussian orbital- 
based calculations [4] neglected the s and p-localised orbital functions and included only 
d functions. Without these more extended s and p functions, however, a significant 
number of plane waves had to be employed which may be undesirable for large systems. 

3.2. Total energies 

To study the method's total energy capability, we have also calculated the bulk lattice 
constants and bulk moduli for A1 and Nb. We compare our PAO results using a number 
of PAO approximations with those of pure plane waves and with experiment in table 1. 
The bulk modulus B(-a-' d2E/da2) is strongly dependent on the precise value of the 
lattice constant a used in its evaluation. Here we have consistently used the theoretically 
predictedvalue. We have also used a constant number of plane waves in the wavefunction 
expansion instead of a constant energy cut-off with lattice constant. This avoids the 
discontinuous jumps in the total energy as a plane wave is removed or added to the 
expansion but has the effect of underestimating lattice constants and overestimating 
bulk moduli for finite expansions when compared with the true theoretical value. 
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Table 1. Predicted lattice constants a and bulk moduli B for AI and Nb using sp3, sp3 + PW, 
sp3d5 PAOS and sp3d5 + PW compared with conventional plane-waves-only calculations and 
experimental values. 

SP3 4.25 50.1 
sp3 + PW 4.12 61.5 
sp3dS 4.05 80.9 3.26 215.6 
sp3d5 + PW 4.01 84.7 3.25 201.2 
PW only 4.01 84.6 3.25 201.1 
Experiment 4.03 [lY] 72.2 [18] 3.30 [19] 170.2 [18] 

76.0 [lY] 

We find that our results are in overall good agreement with experiment [18,19] even 
when no low-energy plane waves are included in the basis. The greatest errors in A1 
again occur for the extreme case of only sp3 PAOS. This small basis appears to be 
inadequate for Al, indicating that d-state hybridisation is important for the half-filled 
band. Adding a few (five to eight) plane waves only partially removed the problem. 

When d orbitals are added to the basis, the discrepancies for A1 are severely reduced. 
The d orbitals (4d) are of course necessary for Nb since they are valence orbitals. We 
see from table 1 that the greatest portion of the errors in the sp3d5 or sp3d5 + PW quantities 
do not appear to be associated with the use of localised orbitals since similar errors are 
present in the plane-wave calculations. As with the band structures, the values for the 
A1 and Nb lattice constants and bulk moduli obtained using sp3d5 + PW are seen to be 
virtually identical with the plane-wave values. These errors of about 1% in the lattice 
constant and about 10% in the bulk modulus for the fully converged calculations are 
typical of all self-consistent LDA calculations. 

4. Vacancy and self-interstitial in AI 

Accurate calculation of defect formation energies in metallic systems is a problem of 
considerable difficulty, owing partly to the high sensitivity of these quantities to electron 
rearrangement and screening effects. Charge densities in the vicinity of a defect may be 
severely altered from that of the perfect metal. Hence, a significant amount of variational 
freedom is required for a reliable calculation. This is especially true for vacancies and 
interstitials where the coordination number is changed. 

In this section, we employ pseudo-atomic orbitals to calculate the undistorted 
vacancy and self-interstitial formation energies in Al. We approximate the isolated 
defect by a periodic array of defects using a simple cubic (sc) supercell with a volume 
containing 32 atomic sites. Smaller supercells are also used for comparison. The vacancy 
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formation energy qorm(V) and interstitial formation energy eform(I) are obtained from 
the supercell total energies by 

Eform(V) = E(N - 1, V) - [(N - l)/AIIE(N) 

&form (1) = E(N + 1 , I )  - [ ( N  + 1)/NIE(N) 

and 

where N is the number of atomic sites in the supercell (equal to 32 for the largest cell), 
E(N - 1, V) is the total energy for the (N - 1)-atom vacancy supercell, E(N + 1, I) is 
the total energy for the ( N  + 1)-atom interstitial supercell and E(N)  is the perfect-crystal 
supercell energy. The lattice constant (of 2 X 4.03 A = 8.06 A for the 32-atom cell) was 
held fixed for both the perfect-supercell and the defect-supercell calculations. Our 
definition for the vacancy formation energy, which assumes a constant volume, differs 
slightly from that used in earlier work [20], where a constant density was assumed. 
Although in the limit of an infinite supercell both definitions must converge to the same 
expression, it is debatable which should be used for the practical case where cells of 
finite size must be employed. 

The total energy calculations were done using an sp3d5 PAO basis on each atom in the 
supercell (and also on the vacancy site for the vacancy calculation) along with a few low- 
energy plane waves. The plane-wave kinetic-energy cut-off E l  ( =h2g:/2m in equation 
(3)) and the local-orbital plane-wave expansion cut-off E2 used were 30 eV and 120 eV, 
respectively. Through tests on the smallest supercell, the low-energy plane-wave cut- 
off of 30 eV was determined to be high enough to make our PAO results agree to within 
about 0.01 eV with those of a 120 eV full plane-wave calculation. We thus expect the 
accuracy to be sufficient for the larger supercells as well. For the 32-site supercell, we 
used four special k-points in the irreducible (one forty-eighth) Brillouin zone. To obtain 
a formation energy, considerable precision must be maintained throughout every aspect 
of the calculation. Small errors per atom can become significant if introduced into every 
cell of a large supercell. We have thus made extensive convergence checks on all 
quantities affecting the total energy. The overall error of our calculation due to k-point, 
basis-set and self-consistency convergence was at most of the order of 0.1 eV, which 
was considered acceptable in view of the fact that other errors associated with the 
pseudopotential-supercell method itself are expected to be worse. 

5. Results 

The values obtained for the formation energy of the vacancy in A1 and the self-interstitial 
in A1 were 0.52 eV and 10.21 eV, respectively. The relatively high value for the inter- 
stitial formation energy may account for the apparent lack of experimental measure- 
ments of its energetics; we could find no experimental value for the A1 self-interstitial 
formation energy. We expect the theoretical value for the interstitial formation energy 
to be reduced considerably if relaxation were included but it will, in any case, remain 
high in comparison with the vacancy formation energy. The vacancy formation energy 
has been experimentally determined to be 0.66 eV [21] which, in the light of numerical 
uncertainties, is in good agreement with our theoretical prediction. 

A major concern related to the use of supercells is the effect due to spurious 
interactions between neighbouring defects. These errors are usually quite unpredictable 
and may bring into question the reliability of the results. To check cell size convergence 
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Figure 3. Relationship between the supercell size 
and the corresponding formation energy for an AI 
vacancy. The largest supercell consistedof 32sites 
and represents the best calculation of the for- 
mation energy (0.52). Remarkably, however, we 
see no large deviations in the formation energy 
from the experimental value even when the for- 
mation energy was computed using unrealistically 
small (four-atom) supercells, where defect inter- 
actions must obviously be present. Apparently, 
such interactions introduce errors which largely 
cancel for the case of AI. Arrow: experiment. 

and to investigate the nature of this defect-overlap effect, we have therefore computed 
the formation energy using several different supercell sizes. The supercells that we 
considered were four-site sc, eight-site FCC, 16-site BCC, 27-site FCC and 32-site sc. To 
ensure that meaningful comparisons could be made, the same basis set, energy cut-offs 
and k-point densities were maintained in all supercells. The results for the vacancy 
formation energy against supercell size are shown in figure 3. We find the deviations in 
the formation energies between different-sized cells is remarkably small, being less than 
0.2 eV for all supercells considered. The unrealistically small four-site supercell, in fact, 
gives a nearly identical formation energy as the largest 32-site cell. This unexpected 
behaviour may be peculiar to simple metals such as Al, where charge can easily rearrange 
without upsetting the basic character in the structure of the bands near the Fermi level. 
The surprising stability of our predicted formation energies with respect to supercell size 
is an indication that keeping the volume fixed, as we did, may be more realistic than 
attempting to keep a constant density by shrinking the vacancy supercell. In general, 
the appropriateness of such a volume modification is questionable since it biases the 
total energy either higher or lower depending only on the relative positions of the 
theoretical lattice constant and that used in the calculation. For the pseudopotential 
used here, for example, shrinking the volume of the vacancy supercell slightly would 
automatically introduce an unphysical negative-energy component into the vacancy 
formation energy, simply because our predicted lattice constant is too small compared 
with the experimental value used in the perfect-crystal supercell calculation. If, on the 
contrary, the theoretical value were used, such as was done in [20], then a small positive- 
energy component would be introduced into the (shrunken) vacancy supercell total 
energy. It is not surprising therefore that the value for the vacancy formation energy 
obtained in [20] (1.5 eV) was higher than that predicted here, although the difference 
of nearly an electronvolt is perhaps more than expected. 

To investigate pseudopotential effects further, we have also calculated the vacancy 
formation energy in A1 using the pseudopotential from [ 15 J for Al. This pseudopotential, 
in either of the two largest supercells, was found to give a formation energy of about 
1.0 eV, which is midway between the result for our pseudopotential and that used in 
[20]. It thus appears that these energies are quite sensitive to small differences in 
pseudopotentials, so that errors in formation energies of the order of 0.5 eV should 
probably be expected, at least for metals. We suspect that this effect due to differences 
in pseudopotentials may have combined with other effects due to differences in supercell 
sizes, cut-off energies and the difference in definition, to produce the discrepancy found 
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between our results and those in [20]. In any case, we do not believe the discrepancy is 
related to the use of pseudo-atomic orbitals. 

6. Conclusion 

We have shown that pseudo-atomic orbitals optionally supplemented with a few low- 
energy plane waves form an efficient basis for the calculations of electronic structure 
and total energies in metals. Both free-electron-like ( plane-wave) and localised (orbital) 
components of the wavefunction can be well described by this method. We have shown 
that our PAO results compare favorably with plane-wave results and with experiment for 
the bulk band structure, lattice constants and bulk moduli. We have also used pseudo- 
atomic orbitals to calculate the vacancy and self-interstitial formation energies in Al. 
The method has the appealing aspects of being easily interpretable in terms of a few 
interacting atomic orbitals and seems to be computationally much faster thanother first- 
principles methods. The latter point makes the PAO method particularly attractive for 
dealing with systems in large supercell configurations. 
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